工业水处理,污废水处理,再生水回用,DTRO膜 企业邮箱Investor Relations
产品分类RODUCT CATEGORY
新闻动态
您当前的位置:首页 > 新闻动态 >

芬顿原理及在工业水处理中的应用

发表时间:2016-10-25 09:05

 传统水处理工艺最少要3个环节,如厌氧-好氧-絮凝。多年来我国的污水处理采用传统工艺进行污水处理,随着近年来国家逐渐提高污水排放标准, 传统工艺难以稳定达标。在这个时候,许多企业就会采用深度处理工艺进行废水处理以适应新的废水排放标准,比如臭氧处理,芬顿处理(硫酸亚铁+双氧水),膜处理,电吸咐..等等,本期金正环保将为行业人士全面介绍芬顿法技术。 

1894年,化学家 Fenton HJ 发现,过氧化氢(H2O2)与二价铁离子Fe2+的混合溶液具有强氧化性,可以将当时很多已知的有机化合物如羧酸、醇、酯类氧化为无机态,对于其中比较一般的有机物可完全被氧化为无机态,氧化效果十分明显。但因其氧化性极强,难以作为有机合成所需的选择性氧化剂,此后半个多世纪中,人们对这种氧化性试剂的应用并不多。直到进入20世纪70年代,芬顿试剂才在环境化学中找到了它的位置。20世纪70年代,水环境的污染成为世界性难题,而持久性有机污染物(指难降解的有机物)的降解问题,是污染控制化学中的研究重点。环境化学家们不久就发现,已沉寂了半个多世纪的芬顿试剂在氧化降解持久性有机污染物方面有独特的优势。不久芬顿试剂用于氧化降解持久性有机物的报道便不断出现。到目前作为废水的深度氧化法(AOP)中的一主流方法,芬顿试剂的应用范围正在不断扩展。

1  芬顿试剂的氧化机理

芬顿试剂具有很强的氧化能力在于其中含有Fe2+H2O2。其反应机理为:

Fe2++H2O2Fe3++ ·OH + OH -

Fe3++H2O2Fe2++ ·HO2 + H +

Fe2++·OH→ Fe3++ OH-

Fe3++·HO2Fe2++ O2+ H +

 

芬顿试剂反应速度快,由于反应条件不同,反应速度会产生一定的差异,但 H2O2的消耗速度是很快的。芬顿试剂反应体系复杂,关键是H2O2Fe2+催化下生成的·OH,其氧化能力仅次于氟,高达2.80 V。另外,·OH具有很高的电负性或亲电性,其电子亲和能力高达 569.3 kJ ,具有很强的加成反应特性。因此,芬顿试剂可以氧化水中的大多数有机物,适合处理难生物降解和一般物理化学方法难以处理的废水。

2、Fenton处理废水的类型

2 . 1 普通 Fenton法

H2O2Fe2+的催化作用下分解产生·OH,其氧化电位是除元素氟外最强的无机氧化剂,它通过电子转移等途径将有机物氧化分解成小分子。同时, Fe2+作为催化剂最终被 O2氧化成 Fe3+,在一定条件下,可有 Fe(OH)3胶体出现,它有絮凝作用,可大量地去除水中的悬浮物。普通Fenton试剂法在黑暗中就能破坏有机物,具有设备投资省的优点。但其存在两个缺点:一是不能充分矿化有机物,初始物质部分转化为某些中间产物,这些中间产物或与Fe3+形成络合物,或与羟基自由基·OH的生成路线发生竞争,并可能对环境的危害更大;二是H2O2的利用率不高。为此人们把紫外线引入 Fenton体系,形成了 UV/Fenton法。

2 . 2 光-芬顿法

普通芬顿法过氧化氢的利用率低,有机物矿化不充分, 如果把光照(紫外光或可见光 )引入标准芬顿体系,可以大大提高其对有机物处理效率及对有机物的降解程度,这种紫外或可见光照射下的 Fenton试剂体系被称为光-Fenton试剂。但光-芬顿试剂的缺点是处理费用较高。详细的反应机理如下:

Fe2++H2O2Fe3++·OH + OH -

[Fe(OH)]2+Fe2++HO·

[Fe(OOC―R)]2+ Fe2++R·+CO2

HO·+RH→R·+H2O

Fe2++HO·→Fe3++OH-

2 . 3  电-芬顿法

电-芬顿试剂就是在电解槽中通过电解反应生成 H2O2Fe2+,从而形成芬顿试剂,并让废水流入电解槽,由于电化学作用,使反应机制得到改善,从而提高了试剂的处理效果。该法综合了电化学反应和芬顿氧化, 充分利用了二者的氧化能力。它与光-芬顿法相比自动产生 H2O2的机制较完善。导致有机物降解的因素较多, 除·OH 的氧化作用外,还有阳极氧化、电吸附等。具体反应机理如下:

3芬顿反应影响因素

3.1温度

温度是芬顿反应的重要影响因素之一。一般化学反应随着温度的升高会加快反应速度,芬顿反应也不例外,温度升高会加快•OH的生成速度,有助于•OH与有机物反应,提高氧化效果和CODCr的去除率;但是,温度升高也会加速H2O2的分解,分解为O2和H2O,不利于•OH的生成。不同种类工业废水的芬顿反应最佳温度,也存在一定差异。处理聚丙烯酰胺水溶液处理时,最佳温度控制在30℃~50℃。研究洗胶废水处理时发现最佳温度为85℃。处理三氯(苯)酚时,当温度低于60℃时,温度有助于反应的进行,反之当高于60℃时,不利于反应。

3.2 pH

一般来说,芬顿试剂是在酸性条件下发生反应的,pH升高会仅抑制•OH的产生,而且会产生氢氧化铁沉淀而失去催化能力。当溶液中的H+浓度过高,Fe3+不能顺利的被还原为Fe2+,催化反应受阻。多项研究结果表明芬顿试剂在酸性条件下,特别是pH在3~5时氧化能力很强,此时的有机物降解速率最快,能够在短短几分钟内降解。此时有机物的反应速率常数正比于Fe2+和过氧化氢的初始浓度。因此,在工程上采用芬顿工艺时,建议将废水调节到2~4,理论上在为3.5时为最佳。

3.3 有机物

针对不同种类的废水,芬顿试剂的投加量、氧化效果是不同的。这是因为不同类型的废水,有机物的种类是不同的。对于醇类(甘油)及糖类等碳水化合物,在羟基自由基作用下,分子发生脱氢反应,然后C-C键的断链;对于大分子的糖类,羟基自由基使糖分子链中的糖苷键发生断裂,降解生成小分子物质;对于水溶性的高分子及乙烯化合物,羟基自由基使得C=C键断裂;并且羟基自由基可以使得芳香族化合物的开环,形成脂肪类化合物,从而消除降低该种类废水的生物毒性,改善其可生化性;针对染料类,羟基自由基可以打开染料中官能团的不饱和键,使染料氧化分解,达到脱色和降低CODCr的目的。用芬顿试剂降解壳聚糖的实验表明当介质pH值3~5,聚糖、H2O2及催化剂的摩尔比在240:12~24:1~2时,芬顿反应可以使壳聚糖分子链中的糖苷键发生断裂,从而生成小分子的产物。

3.4 过氧化氢与催化剂投加量

芬顿工艺在处理废水时需要判断药剂投加量及经济性。H2O2的投加量大,废水CODCr的去除率会有所提高,但是当H2O2投加量增加到一定程度后,CODCr的去除率会慢慢下降。因为在芬顿反应中H2O2投加量增加,•OH的产量会增加,则CODCr的去除率会升高,但是当H2O2的浓度过高时,双氧水会发生分解,并不产生羟基自由基。催化剂的投加量也有与双氧水投加量相同的情况,一般情况下,增加Fe2+的用量,废水CODCr的去除率会增大,当Fe2+增加到一定程度后。CODCr的去除率开始下降。原因是因为当Fe2+浓度低时,随着Fe2+浓度升高,H2O2产生的•OH增加;当Fe2+的浓度过高时,也会导致H2O2发生无效分解,释放出O2。在工程实际中过氧化氢及催化剂的投加一般通过实验后确定。

4、芬顿工艺在废水处理中的运用

近年来,随着污水中污染物成分越来越复杂,传统的生化系统很难处理达标。工艺芬顿试剂在工业废水处理中的广泛应用,用来处理难以降解的有机污染物。

4.1焦化废水

焦化废水中含有难生化降级的多稠环芳烃和含氮杂环化合物,废水中生物毒性及抑制性物质多,生化处理后废水难以达标。传统的A/O或A2/O等方法难以实现焦化废水的稳定达标排放,采用活性炭工艺处理有一定的效果,但是运行成本较高而且会产生二次污染。由于芬顿工艺在处理难降解有机物废水的领域运用有叫广泛的前景,采用Fenton反应和活性炭吸附的组合工艺,可以将焦化废水的COD去除97%左右,出水能够达到污水排放一级标准。采用Fenton工艺处理COD为2000mg/L左右的焦化废水,也可以取得不错的效果。

4.2印染废水

印染废水具有色度高,COD浓度高,含盐量高,可生化性差的特点。芬顿试剂具有高氧化性特点,可以使部分难生物降解有机物转换成可生化性好的物质,并且可以破坏染料中发色的基团,降低色度,所以被广泛应用于印染废水的处理领域。采用芬顿的衍生工艺,如微电解-Fenton氧化工艺处理难降解蒽醌染整废水,COD去除率93%~94%;BOD5去除率可达90%~95%;出水色度也可去除95%~96%。当pH值为2~4时,H2O2投加量为30g/L,催化剂投加量为H2O2的1/150时,可用Fenton工艺处理染料中间体H酸的生产废水,COD的去除率为50%。

4.3垃圾渗滤液

垃圾渗滤液的有机物浓度非常高、并且大部分属于难生物降解有机物,其中还包含了很多有毒有害物质,氨氮浓度高、微生物营养元素比例失调,一般生化处理工艺的复杂并且效果一般。研究发现用Fenton工艺处理经过生化处理后的垃圾渗滤液,出水水质可达污水排放二级标准。取垃圾填埋场经过厌氧、好氧处理后的渗滤液采用间歇反应进行了Fenton处理,研究发现,Fenton工艺可以大大提高垃圾渗滤液的可生化性,为后续进一步生化处理提供了保障。

------分隔线----------------------------

  版权所有:烟台金正环保科技有限公司  地址:山东省烟台市莱山区蓝德路8号
  联系我们 | 推广合作:13963899295,邮件:sawang@jinzhenghb.com | 招聘:0535-6626909
技术支持:金正环保
企业关键词:工业水处理,污废水回用,再生水回用,DTRO膜,纳滤膜,硅碳膜,DTRO膜制造,酸分离膜,碱分离膜,DTNF,DTRO膜制造